60-SIPT Bluetooth and WiFi Module

Recommended for New Design (RND)


Powered by the powerful Marvell 88W8997 chipset, Laird Connectivity’s 60-SIPT WiFi + Bluetooth module achieve the best possible connectivity and performance in any RF environment. With industry-leading software, broad OS support, and multiple form factors, Laird Connectivity’s 60 Series offers flexibility to meet your needs. The 60 Series introduces 802.11ac, 2x2 MU-MIMO, and Bluetooth 5.1 on one lowpower module, delivering future-ready cutting edge technology for your product. Building on the security and robustness inherited from Laird Connectivity’s expertise in its 40, 45, and 50 Series modules means ultra-high data rates, improved performance, and the most reliable wireless in crucial applications such as medical and industrial.

Available as the ST60-SIPT.


Wi-Fi Spec
802.11 a/b/g/n/ac
Dimension (Length - mm)
13 mm
Dimension (Width - mm)
14 mm
Dimension (Height - mm)
1.87 mm
BT Capable
BT Chipset
BT Dual Mode
BT Interfaces
Data Rate
up to 866 Mbps
Spatial Streams
Temp Spec
-30C +85C
Wi-Fi Chipset
Marvell 88w8997
Wi-Fi Interfaces
Product Type Technology OS/Software System Architecture Chipset (Wireless) Antenna Type Logical Interfaces Frequency Range (Min) Frequency Range (Max) Frequency Range 2 (Min) Frequency Range 2 (Max) Development Kit Contents
DVK-ST60-SIPT Development Kit 802.11abgn, 802.11ac, Bluetooth 5.1, Dual Mode (Classic + BLE) Linux, Android Hosted Marvell 88W8997 External Serial, SDIO, USB 2400 MHz 2495 MHz 5150 MHz 5825 MHz Development board, Power options, SDIO Extender, Ribbon Cable, Antennas (Two 2.4G/5GHz FlexPIFA antennas), Web link card
Product Type Technology OS/Software System Architecture Chipset (Wireless) Antenna Type Logical Interfaces Frequency Range (Min) Frequency Range (Max) Frequency Range 2 (Min) Frequency Range 2 (Max) Antenna Options Connector Dimension (Height - mm) Dimension (Length - mm) Dimension (Width - mm) Wi-Fi Interfaces
ST60-SIPT Embedded Module 802.11abgn, 802.11ac, Bluetooth 5.1, Dual Mode (Classic + BLE) Linux, Android Hosted Marvell 88W8997 External Serial, SDIO, USB 2400 MHz 2495 MHz 5150 MHz 5825 MHz Pin access Surface mount (SMT) 1.87 mm 13 mm 14 mm SDIO/USB/PCIE

Certified Antennas

  • Nanoblade Series Antennas


    Nanoblade Series Internal Antenna

    Vertically polarized, omnidirectional planar antenna with 2 dBi gain @2.24-2.5 GHz, 3.9 dBi gain @ 5.15-5.35 GHz, and 4 dBi gain @ 5.6 Ghz. 

    Learn More
  • Mini Nanoblade Series Antennas


    Mini Nanoblade Flex Series Internal Antenna

    Flexible, onmidirectional PCB Mini NanoBlade. Vertically polarized, with 2.79 dBi gain @ 2.4 GHz and 3.38 dBi gain @ 5 GHz. 

    Learn More
  • FlexPIFA Antenna


    FlexPIFA Flexible Adhesive-Backed PIFA Internal Antenna

    Industry-first, flexible, planar inverted-F antenna for curved surfaces 2.5-3 dBi gain. 2.4 GHz and dual-band 2.4/5.5 GHz. 

    Learn More
  • mFlexPIFA Antenna


    mFlexPIFA Flexible Adhesive-Backed PIFA Internal Antenna

    FlexPIFA antenna for metal mounting with minimal detuning. 2.4 GHz and dual-band 2.4/5.5 GHz with 2 dBi of gain. 

    Learn More
  • 001-0009


    2.4 / 5.5 GHz Dipole RF Antennas
    Learn More
  • FlexMIMO Dual-Band MIMO Antenna


    FlexMIMO Dual-Band MIMO Internal Antenna

    The world's first flexible PIFA antenna for Wi-Fi MIMO applications with gain of 2-3.5 dBi. 

    Learn More

Become a Laird Connectivity Customer and Gain Exclusive Access to Our Design Services Team

  • Antenna Scans
  • Antenna selection and placement
  • Custom antenna design
  • Worldwide EMC testing / certifications
  • Embedded RF hardware / firmware design
  • Cloud architecture and integration
  • Mobile application development
  • Product & Industrial Design

Talk to an Expert


Name Part Type Last Updated
Product Brief - 60 Series.pdf All Brochure 02/07/2019
Datasheet - 60-SIPT All Datasheet 09/02/2020
Application Note - Guidelines for Replacing Antennas v1.0 All Application Note 01/17/2019
Wake on WLAN Support.pdf All Application Note 01/17/2019
DVK-60-SIPT Schematic.pdf All Documentation 01/17/2019
User Guide - DVK-60-SIPT.pdf All Documentation 05/21/2020
Software Integration Guide - 60 Series.pdf All Documentation 01/17/2019
Sterling Release Packages 60 Series All Software 03/31/2020
Schematic - DVK-60-SIPT v1.0.pdf All Software 01/17/2019
SU60-SIPT.zip All Software 01/17/2019
Application Note - Backports Integration by Yocto Recipe All Application Note 07/08/2019
Application Note - Bluetooth Integration v1.1 All Application Note 12/04/2019
IC Certifications - ST60-SIPT All Certification 07/08/2019
Korea Certifications - ST60-SIPT All Certification 07/08/2019
MIC Certifications - ST60-SIPT All Certification 11/14/2019
AS/NZS Certifications - 60-SIPT and 60-2230C All Certification 07/08/2019
CE Certifications - 60-SIPT and 60-2230C All Certification 10/02/2019
FCC Certifications - 60-SIPT and 60-2230C All Certification 07/08/2019
Summit Stack Evaluation Request All Software 03/25/2020
Application Note - PetaLinux Software Integration - 60 Series and LWB Series All Application Note 08/13/2020


Can a DVK-ST-60-SIPT be upgraded to run SUMMIT software?

No. Unfortunately there is no way to update the settings on the DVK-ST60-SIPT for use with the SUMMIT software. A different DVK would be required: DVK-SU60-SIPT.

Can an 802.11ac Wave 2 device communicate with an 802.11ac Wave 1 access point?

Yes, but it?s capabilities and features will be limited to those of 802.11ac Wave 1.

Can I upgrade from a Sterling-60 to a Summit-60?

Yes, the Sterling-60 can be upgraded to a Summit-60 with a software upgrade. There is a license agreement that needs to be in place before this can be done. Please contact us for information.

Can the 60 series radio operate in a 1x1 antenna configuration instead of a 2x2?

Yes, in our 2nd software release we will provide the capability to switch between a 1x1 and a 2x2 configuration.


Does Laird offer RTOS support for their modules?

Our only officially supported option for RTOS is the Sterling-LWB with Cypress? WICED stack. However, if you are interested in using our module with an RTOS please contact Laird support for more information and assistance.

Does the 60 series module support WoW (Wake on Wireless)?

Yes, WoW is supported on  WLAN. Please see our Wake on Wireless application note for more information. In future releases we will support WoBT.

Does the 60 series radio support all channel bandwidths?

No, the 60 series radio only supports 20, 40, and 80 MHz wide channels. It does not support 120 MHz channels.

Does the 60 series radio support AP mode?

The 60 series supports a limited SoftAP mode. It is not certified or capable of being a full AP.

Does the 60 series radio support SDIO 3.0 for high throughput applications?

Yes, the 60 radio supports SDIO 3.0.

Does the 60 series radio support the 802.11d specification?

Only the Summit-60 will support 802.11d. The Sterling-60 does not support 802.11d.

Does the 60 series radio support the CCX (Cisco Compatible Extensions) feature?

Yes and no. The Sterling-60 module does not support CCX. The Summit-60 module does indeed support CCX.

Does the 60 series support coexistance features?

Yes. The 60 has coexistence arbitration for WLAN, Bluetooth, and LTE operation.

Does the ST60/SU60 support FIPS 140-2?

The 60 series radio itself is not FIPS certified and cannot be certified, since FIPS must be tied to an entire platform (host, OS, encryption mechanisms, etc..) and have a defined boundary within the platform (data at rest, data at motion, Ethernet, USB, Wi-Fi, etc..).

From a Wi-Fi radio perspective, the on-board encryption hardware accelerators on the Marvell silicon are not FIPS compliant. Therefore, a customer would need to disable the radio encryption accelerator on the 60 series radio and use a FIPS validated crypto-engine. This is similar to what Laird Connectivity did on our 60 Series SOM to achieve FIPS certification – from a high-level perspective we bypassed the silicon's encryption HW accelerators and forwarded all of the encryption functions to a FIPS validated crypto-module on the SOM60. Disabling the radio’s encryption functions can be done from the host.  The rest of the FIPS architecture will need to be determined by customer as FIPS is tied to more than just the radio.

Each implementation of FIPS is different and the radio is just one piece of a larger FIPS strategy. Laird Connectivity's implementation of FIPS was specifically designed for the SOM60 platform.

How do I enable monitor mode in 60 series?

Only the SU60 version supports monitor mode.

1. Load backports driver, such as below for SDIO option.

insmod compat/compat.ko
insmod net/wireless/cfg80211.ko
insmod net/mac80211/mac80211.ko
insmod drivers/net/wireless/laird/lrdmwl/lrdmwl.ko
insmod drivers/net/wireless/laird/lrdmwl/lrdmwl_sdio.ko

2. Setup interface type as monitor mode and bring it up.

iw dev wlaninterface add wlan1 type monitor
ifconfig wlan1 up

3. Use tcpdump to capture the packet as the command below.

tcpdump -i wlan1  -n -w wireless.cap

How do I implement SDIO reset in ST60/SU60?

SDIO reset would rely on SDIO card detection function, which can be done by broken-cd setting in device tree.

1. Modify the dts file:

For example if you use NXP IMX6UL board, the dts file is located at “~/projects/fsl-release-bsp/build-imx6ul-fb/tmp/work-shared/imx6ulevk/kernel-source/arch/arm/boot/dts/imx6ul-14x14-evk.dts”. If you use mmc0, the setting will be in usdhc1.

Add broken-cd function in the setting of usdhc1 as below and also need to make sure there is no setting of “non-removable”.

&usdhc1 {

pinctrl-names = "default", "state_100mhz", "state_200mhz";

pinctrl-0 = <&pinctrl_usdhc1>;

pinctrl-1 = <&pinctrl_usdhc1_100mhz>;

pinctrl-2 = <&pinctrl_usdhc1_200mhz>;

cd-gpios = <&gpio1 19 GPIO_ACTIVE_LOW>;




vmmc-supply = <&reg_sd1_vmmc>;

status = "okay";


2. Rebuild kernel and then it will set MMC_CAP_NEEDS_POLL during mmc driver initialization.

int mmc_of_parse(struct mmc_host *host)


if (of_property_read_bool(np, "non-removable")) {

dev_warn(host->parent,"Parse Card Detection: non-removable\n");


if (of_property_read_bool(np, "cd-post"))

host->caps2 |= MMC_CAP2_CD_POST;

} else {

cd_cap_invert = of_property_read_bool(np, "cd-inverted");

if (of_property_read_bool(np, "broken-cd"))


dev_info(host->parent,"Parse Card Detection: broken-cd\n");

host->caps |= MMC_CAP_NEEDS_POLL;




Then SDHC will check the SDIO bus per second and once there is any PMU_EN or PDN assert event, SDHC will detect the bus no longer available and will unload/reload the SDIO again automatically.

How do I integrate an ST60 module into an Ubuntu system?

1. Add two modules in the list of blacklist.conf:

vi /etc/modprobe.d/blacklist.conf
blacklist cfg80211
blacklist mac80211

2. Export the kernel settings and build driver:

export KLIB_BUILD=/lib/modules/4.4.0-31-generic/build
export KLIB=/lib/modules/4.4.0-31-generic/kernel

tar xf backports-laird-  -C projects/
cd ~/projects/laird-backport-
make defconfig-sterling60

3. Copy firmware to host and add link file  (here is an example of the PCIE option):

sudo mkdir /lib/firmware/lrdmwl
sudo cp 88W8997_ST_pcie_uart_v5.4.24.1.bin /lib/firmware/lrdmwl/
sudo cp regulatory_sterling60.db /lib/firmware/
cd /lib/firmware/lrdmwl
sudo ln -s 88W8997_ST_pcie_uart_v5.4.24.1.bin 88W8997_pcie.bin
sudo ln -s  /lib/firmware/regulatory_sterling60.db /lib/firmware/regulatory.db

4. Load the drivers:

cd ~/projects/laird-backport-
sudo insmod compat/compat.ko
sudo insmod net/wireless/cfg80211.ko
sudo insmod net/mac80211/mac80211.ko
sudo insmod drivers/net/wireless/laird/lrdmwl/lrdmwl.ko
sudo insmod drivers/net/wireless/laird/lrdmwl/lrdmwl_pcie.ko

How do I test layer 2 Bluetooth stability without setting up a profile on a Linux platform?

In BlueZ, some commands such as l2test or l2ping are able to generate traffic on L2CAP layer. To test performance and reliability, you can use the l2test command:

On the server, run the command:

l2test -I 2000 -r

On the client side, run the command:

l2test -O 2000 -s XX:XX:XX:XX:XX:XX

How do I use hostapd to run AP mode on ST60 module?

1. Load backports driver. (Here is an example for the SDIO option.)

insmod compat/compat.ko
insmod net/wireless/cfg80211.ko
insmod net/mac80211/mac80211.ko
 insmod drivers/net/wireless/laird/lrdmwl/lrdmwl.ko
insmod drivers/net/wireless/laird/lrdmwl/lrdmwl_sdio.ko
Ifconfig wlan0 up

2. Set interface as AP mode

iw dev wlan0 interface add wlan1 type __ap

3. Use hostapd utility to load hostapd.conf to enable AP.

hostapd /etc/hostapd/hostapd.conf -B (Set interface=wlan1 in hostapd.conf)

How to set radio to Soft AP mode?

If you don't want simultaneous ap/sta, you can run the commands:

nmcli conn add type wifi ifname wlan0 con-name softAP autoconnect no ssid softAP

nmcli conn modify softAP 802-11-wireless.mode ap 802-11-wireless.band bg 802-11d

nmcli conn up softAP

You can also do it via wpa_supplicant .conf files if you do not have nmcli.



I am using a 60 series radio and my firmware is failing to download. What can I do?

You may not have enough space for the firmware. Verify the size of the specific firmware you are using and compare that to your available space. It is also possible that your firmware is not in the correct directory. Verify the location of the firmware file. If neither of these seem to be the issue, please contact Laird support and have the MAC address of your module handy.

Performance difference for 802.11AC with only one antenna on the Sterling 60?

The Sterling 60 has connectors for two antennas. What is the performance difference for 802.11AC with only one antenna? That is, a single antenna firmware version was mentioned for the Sterling 60 at a later date. How would that performance compare to the two antenna 60?  - Regarding performance difference between 1x1 and 2x2 MIMO:  We haven?t tested it yet.  Theoretically, 1x1 has half the throughput of 2x2, but you will also lose out on some TX and RX performance.  Typically, with 2x2 MIMO, the TX power is amplified thanks to 2x2 MIMO phase shifting.  Using single antenna you can expect 3dB loss in TX power which equates to half the TX performance vs using two antennas.  For 1x1 RX; the radio will only have one chance to receive a packet, whereas 2x2 gives the radio 2 chances to receive a packet.  With that said, to achieve max performance we recommend two antennas.  However single antenna does offer benefits such as lower power consumption and allow for a smaller form factor product.      

What are the differences between the Sterling-60 and a Summit-60?

There are no hardware differences between the two modules. However there are vast software differences. The Sterling-60 provides professional grade connectivity while the Summit-60 has more security and roaming features intended for Enterprise use.

What Bluetooth modules are necessary for the 60 series radio to run on Linux?

When using the 60 series raido you should leverage our latest backports package and documentation. If you do this, as a result, you should have bluetooth.ko and hci_uart.ko. These are the required kernel modules for Bluetooth.

What encryption methods are supported in ad-hoc mode with ST60/SU60 series radios and how do I enable them?

The ST60/SU60 modules supports either the open-none or WEP methods in ad hoc mode.

To enable ad hoc mode:

1. Set the interface type as ibss mode and bring it up.

# iw wlan0 set type ibss
# ip link set wlan0 up

2. run wpa_supplicant on all devices connected to the network with the following command:

# wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant_adhoc.conf -D nl80211

To configure open-none:

ctrl_interface=/run/wpa_supplicant GROUP=wheel

To configure WEP:

ctrl_interface=/run/wpa_supplicant GROUP=wheel

What interfaces can be used with the M.2 E key version of the 60 series radio?

The interfaces for WiFi are USB, SDIO, and PCIE. The interfaces for Bluetooth are UART, SDIO, and USB.

What is KNOB (Key Negotiation of Bluetooth) attack vulnerability and how is it addresses in the SU60/ST60?

The specification of Bluetooth includes an encryption key negotiation protocol that allows for the negotiate encryption keys with 1 Byte of entropy without protecting the integrity of the negotiation process.

A remote attacker can manipulate the entropy negotiation to let any standard compliant Bluetooth device negotiate encryption keys with 1 byte of entropy and then brute force the low entropy keys in real time.

With the release for the ST60/SU60, all options including USB-USB have addressed and resolved the KNOB attack vulnerability.

What is the difference between 802.11ac Wave 1 and Wave 2?

There are several differences. Wave 2 has or supports Multi User MIMO, higher PHY rates, larger channel width, an additional spatial stream, and higher MAC throughput.

What is the difference between Thick MAC and Thin MAC firmware?

Generally speaking the difference is that a Thick MAC firmware will have most of the radios features and options built into the firmware. With a Thin MAC firmware many features are pulled out of the firmware and put into the driver and supplicant.

What is the final decision of WoW pin defined in 60 series?

GPIO Pin on the 88w8997 Pins on SIP WOW Use GPIO 0 23 88W8997.WLAN->Host wake up GPIO 3 67   88W8997.BT->Host wake up PMU_EN 51 Host->88W8897 wake up  

What is the WoW power consumption in BT?

Attached power point file.  

What is the WoW power consumption in WiFi?

Attached power point file.  

What kernel config should be set for ST60?

CONFIG_ARCH_BERLIN  need to be disabled

Platform Selection  -->

[ ] Marvell Berlin SoC Family

Networking support --> Wireless

[ ] cfg80211

Device Driver -->

[*] LED support

<*> LED Class Support

<*> LED Support for GPIO connected LED

[*] LED support for LEDs on system controller

 -*-  LED Trigger support

<*> LED Heartbeat Trigger

[*] LED CPU trigger

Cryptographic API -->

<*> CCM support

<*> GCM/GMAC support

<*> CMAC support

<*> CRC32 CRC algorithm

<*> AES cipher algorithms

<*> ARC4 cipher algorithm

Kernel hacking

<*> Kernel debugging


If WiFi interface is PCIE, then need to check the following configuration as well.

Bus support -->

[*] PCI Support

[*] Message signaled Interrupt

[*] Root port Advance error reporting support

[*] PCI express ASPM control


For BT, need to have few more extra configuration.

Cryptographic API -->

<*> ECDH algorithm

Networking support -->

< > Bluetooth

What kernel versions does the 60 series radio support?

It supports Linux kernel versions ranging from 3.18 to 4.9 using our backports package.

What key version does the M.2 60 series radio use?

The 60 series radio as well as the 50 support the the M.2 ?E? key.

What WiFi kernel modules are necessary for the 60 series radio to run on Linux?

When using the 60 series radio you should leverage our latest backports package and documentation. If you do this, as a result, you should have the following kernel modules: compat.ko, cfg80211.ko, mac80211.ko, lrdmwl.ko, and lrdmwl_sdio.ko.

When loading the drivers for ST60 is the message "lrdmwl_sdio mmc0:0001:1: Direct firmware load for mwlwifi/WlanCalData_ext.conf failed with error -22" harmful?

No, actually this message is only a warning and should only come up when the highest linux printk debug is set. Laird does not use this file within its software. Hende the warning as well as the file an be neglected.

Which Bluetooth 4.2 features does the 60 series radio support?

All of them.

Which Bluetooth 5 features does the 60 series radio support?

The 60 series radio supports every BT 5 feature with the exception of LE Long Range.

Which EAP types are tested with the supplicant for Sterling ST60-SIPT and ST60-2230?

We test our Sterling supplicant for all of the following EAP types: EAP-FAST LEAP PEAP-MSCHAP PEAP-GTC PEAP-TLS EAP-TLS EAP-TTLS

While loading release in ST60/SU60, driver indicates "/lib/firmware/lrdmwl/regpwr.db not found." What does it mean and how to handle it?

While loading release in ST60/SU60, driver indicates "/lib/firmware/lrdmwl/regpwr.db not found." What does it mean and how to handle it?

It’s the adaptive world mode component (awm) which implements 802.11d/WorldMode “roaming” for SU60, not for ST60.
Among other things it includes a daemon which runs and checks the geo-location of the radio and sets the regulatory domain accordingly.  
The message is just informational. It is not an error and will not cause any problems.

To integrate this part, if you build by yocto, you can add adaptive_ww in your recipe.